Fundamentals of Wireless Power Transfer

Wireless power transfer comprises a set of heterogeneous technologies. Their correct applicability depends on the power requirements and the scenario in which it is expected to be used (position between transmitter and receiver, separation between them, electronics dimensions, etc.). First, this chapter describes how wireless power transfer systems have evolved. Then, the main operating principles of the wireless power techniques are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 96.29 Price includes VAT (France)

Softcover Book EUR 126.59 Price includes VAT (France)

Hardcover Book EUR 126.59 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  1. Energous WattUp® Wire-Free Charging Technology. http://energous.com/
  2. Energy Research | Navigant Research. https://www.navigantresearch.com/
  3. IHS Markit | Leading Source of Critical Information. https://ihsmarkit.com/index.html
  4. Ossia: Proven Wireless Power Technology You Can Use Today. http://www.ossia.com/
  5. Technology - Long Range Wireless Power Transmission | Wi-Charge.com. https://www.wi-charge.com/technology/
  6. Wireless Power Products - Powercastco.com. https://www.powercastco.com/
  7. Chow, J.P.W., Chung, H.S.H., Cheng, C.S.: Online regulation of receiver-side power and estimation of mutual inductance in wireless inductive link based on transmitter-side electrical information. In: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1795–1801. IEEE (2016). https://doi.org/10.1109/APEC.2016.7468111.http://ieeexplore.ieee.org/document/7468111/
  8. Dai, J., Ludois, D.C.: A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 30(11), 6017–6029 (2015). https://doi.org/10.1109/TPEL.2015.2415253, http://ieeexplore.ieee.org/document/7064773/ArticleGoogle Scholar
  9. Gibbs, Y.: NASA Dryden Fact Sheets - Beamed Laser Power (2015). https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-087-DFRC.html
  10. Jeong, S.Y., Thai, V.X., Park, J.H., Rim, C.T.: Self-inductance-based metal object detection with mistuned resonant circuits and nullifying induced voltage for wireless EV chargers. IEEE Trans. Power Electron. 34(1), 748–758 (2019). https://doi.org/10.1109/TPEL.2018.2813437, https://ieeexplore.ieee.org/document/8309279/ArticleGoogle Scholar
  11. Jin, K., Zhou, W.: Wireless laser power transmission: a review of recent progress. IEEE Trans. Power Electron. 34(4), 3842–3859 (2019). https://doi.org/10.1109/TPEL.2018.2853156. https://ieeexplore.ieee.org/document/8404085/ArticleGoogle Scholar
  12. Kalwar, K.A., Aamir, M., Mekhilef, S.: Inductively coupled power transfer (ICPT) for electric vehicle charging A review. Renew. Sustain. Energy Rev. 47, 462–475 (2015). https://doi.org/10.1016/J.RSER.2015.03.040, https://www.sciencedirect.com/science/article/pii/S1364032115001938ArticleGoogle Scholar
  13. Kim, H.J., Hirayama, H., Kim, S., Han, K.J., Zhang, R., Choi, J.W.: Review of near-field wireless power and communication for biomedical applications. IEEE Access 5, 21,264–21,285 (2017). https://doi.org/10.1109/ACCESS.2017.2757267, http://ieeexplore.ieee.org/document/8052089/ArticleGoogle Scholar
  14. Kisseleff, S., Chen, X., Akyildiz, I.F., Gerstacker, W.H.: Efficient charging of access limited wireless underground sensor networks. IEEE Trans. Commun. 64(5), 2130–2142 (2016). https://doi.org/10.1109/TCOMM.2016.2550435, http://ieeexplore.ieee.org/document/7447753/ArticleGoogle Scholar
  15. Lu, K., Nguang, S.K., Ji, S., Wei, L.: Design of auto frequency tuning capacitive power transfer system based on class-E2 dc/dc converter. IET Power Electron. 10(12), 1588–1595 (2017). https://doi.org/10.1049/iet-pel.2016.0655, http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2016.0655ArticleGoogle Scholar
  16. Massa, A., Oliveri, G., Viani, F., Rocca, P.: Array designs for long-distance wireless power transmission: state-of-the-art and innovative solutions. Proc. IEEE 101(6), 1464–1481 (2013). https://doi.org/10.1109/JPROC.2013.2245491, http://ieeexplore.ieee.org/document/6472725/ArticleGoogle Scholar
  17. Mirbozorgi, S.A., Bahrami, H., Sawan, M., Gosselin, B.: A smart multicoil inductively coupled array for wireless power transmission. IEEE Trans. Ind. Electron. 61(11), 6061–6070 (2014). https://doi.org/10.1109/TIE.2014.2308138, http://ieeexplore.ieee.org/document/6748029/ArticleGoogle Scholar
  18. Pavo, J., Badics, Z., Bilicz, S., Gyimothy, S.: Efficient perturbation method for computing two-port parameter changes due to foreign objects for WPT systems. IEEE Trans. Magn. 54(3), 1–4 (2018). https://doi.org/10.1109/TMAG.2017.2771511, http://ieeexplore.ieee.org/document/8122030/ArticleGoogle Scholar
  19. Popovic, Z.: Cut the cord: low-power far-field wireless powering. IEEE Microw. Mag. 14(2), 55–62 (2013). https://doi.org/10.1109/MMM.2012.2234638, http://ieeexplore.ieee.org/document/6475366/ArticleGoogle Scholar
  20. Sasaki, S., Tanaka, K.: Wireless power transmission technologies for solar power satellite. In: 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, pp. 3–6. IEEE (2011). https://doi.org/10.1109/IMWS.2011.5877137, http://ieeexplore.ieee.org/document/5877137/
  21. Thrimawithana, D.J., Madawala, U.K.: A primary side controller for inductive power transfer systems. In: 2010 IEEE International Conference on Industrial Technology, pp. 661–666. IEEE (2010). https://doi.org/10.1109/ICIT.2010.5472724, http://ieeexplore.ieee.org/document/5472724/
  22. Triviño-Cabrera, A., Aguado-Sánchez, J.: A review on the fundamentals and practical implementation details of strongly coupled magnetic resonant technology for wireless power transfer. Energies 11(10), 2844 (2018). https://doi.org/10.3390/en11102844, http://www.mdpi.com/1996-1073/11/10/2844ArticleGoogle Scholar
  23. Triviño-Cabrera, A., Lin, Z., Aguado, J.: Impact of coil misalignment in data transmission over the inductive link of an EV wireless charger. Energies 11(3), 538 (2018). https://doi.org/10.3390/en11030538, http://www.mdpi.com/1996-1073/11/3/538ArticleGoogle Scholar
  24. Trivino-Cabrera, A., Ochoa, M., Fernandez, D., Aguado, J.A.: Independent primary-side controller applied to wireless chargers for electric vehicles. In: 2014 IEEE International Electric Vehicle Conference (IEVC), pp. 1–5. IEEE (2014). https://doi.org/10.1109/IEVC.2014.7056193, http://ieeexplore.ieee.org/document/7056193/
  25. Yan, Z., Zhang, Y., Kan, T., Lu, F., Zhang, K., Song, B., Mi, C.C.: Frequency optimization of a loosely coupled underwater wireless power transfer system considering eddy current loss. IEEE Trans. Ind. Electron. 66(5), 3468–3476 (2019). https://doi.org/10.1109/TIE.2018.2851947, https://ieeexplore.ieee.org/document/8408696/ArticleGoogle Scholar
  26. Zhang, Z., Chau, K.T., Qiu, C., Liu, C.: Energy encryption for wireless power transfer. IEEE Trans. Power Electron. 30(9), 5237–5246 (2015). https://doi.org/10.1109/TPEL.2014.2363686, http://ieeexplore.ieee.org/document/6928497/ArticleGoogle Scholar
  27. Zhou, W., Jin, K.: Efficiency evaluation of laser diode in different driving modes for wireless power transmission. IEEE Trans. Power Electron. 30(11), 6237–6244 (2015). https://doi.org/10.1109/TPEL.2015.2411279, http://ieeexplore.ieee.org/document/7056428/ArticleGoogle Scholar

Author information

Authors and Affiliations

  1. Escuela de Ingenierías Industriales, University of Malaga, Málaga, Spain Alicia Triviño-Cabrera, José M. González-González & José A. Aguado
  1. Alicia Triviño-Cabrera